SPX Single Seals

Split Seals

- 1. Single seal in split configuration
- 2. Balanced design
- 3. Independent of direction of rotation
- 4. For plain shafts
- 5. Semi-cartridge construction
- 6. Built-in flushing connections
- 7. Designed with external pressurization
- 8. Factory assembled fully split single seal, 2 x 2 segments
- 9. Stationary design with multiple springs

I, 1₅ 16 5 2 3 11 h8 _> □ d2 ģ 12 8 15 10 14 -13 17 13 I_1

Note: The item numbers as depicted above are based on our technical experience and knowledge and are placed in the chronological order of their assembly procedure

ltem	Description					
1	Seal face					
2, 5, 7	O-ring					
3	Spring					
4	Seat					
6	Driver					
8	Thrust ring					
9	Clamp collar					
10	Housing					
11	Assembly fixture					
12, 15	Gasket					
13	Head screw plug					
14	Mounting plate					
16	Set screw					
17	Socket head screw					

Technical Features

- 1. Economical to assemble as the complete dismantling of the equipment is not necessary to install the seal
- 2. Reduces down time due to ease in installation
- 3. Rugged seal construction
- 4. Distortion of the seat is avoided by mechanical decoupling of the clamping ring
- 5. Ease in installation and no modifications are required because the seal is located outside of the stuffing box.
- 6. Due to the stationary design and the elastic seat mounting a high tolerance of shaft deflections can be accommodated
- 7. Low leakage is achieved by the elimination of secondary seals which eliminates leakage paths between split components
- Shaft is protected by uniform torque transmission through the clamping ring which prevents damage caused by set screws.
- 9. Springs are product protected to avoid contamination and clogging

Typical Industrial Applications

Agitators Chemical Industry Centrifugal pumps Conveying pulp with stock pumps Cooling water pumps for energy generation Conveying timber to refiners with pumping screws Circulation of pulp-and-water mixtures in storage vessels Displacement pumps Process industry Petrochemical Industry Power Plant Technology Pulp and paper industry Pump stations for waste water treatment

Performance Capabilities

Shaft diameter: d₁= Upto...150mm (Upto... 6.000") Pressure: $p_1 = 10$ bar (145 PSI) Temperature: t = -40 °C... + 150 °C (-40°F... + 300°F), above 80 °C (175 °F) flush is recommended Speed = 10 m/s (33 ft/s)Axial movement: ± 1.5 mm (1/16") Radial movement: ± 0.8 mm (1/32")

Materials

Seal face: Carbon graphite antimony impregnated (A), Silicon carbide (Q2) Seat: Silicon carbide (Q2) Secondary seals: FKM (V), EPDM (E), NBR(P) Springs: CrNiMo steel (G) Metal parts: CrNiMo steel (G)

Dimensions												
Dimensions in inch												
dw	d ₁	d ₂	d _a	а	s	I ₁	l ₂	I ₃	I ₄	I ₅	Х	
2.000	2.953	3.307	5.433	3.456	0.591	2.480	2.402	1.181	1.772	0.118	3/8 NPT	
2.125	3.110	3.465	5.787	3.622	0.591	2.480	2.402	1.142	1.772	0.118	3/8 NPT	
2.375	3.504	3.976	5.866	4.134	0.689	2.520	2.441	1.181	1.811	0.118	3/8 NPT	
2.500	3.642	4.114	6.181	4.272	0.689	2.520	2.441	1.181	1.811	0.118	3/8 NPT	
2.750	3.858	4.449	6.929	4.646	0.787	2.520	2.441	1.181	1.811	0.118	3/8 NPT	
3.000	4.094	4.803	7.638	5.000	0.787	2.559	2.480	1.339	1.850	0.118	3/8 NPT	
3.250	4.331	5.197	7.520	5.315	0.787	2.559	2.480	1.220	1.850	0.118	3/8 NPT	
3.500	4.764	5.512	7.992	5.709	0.866	2.854	2.776	1.240	1.988	0.118	1/2 NPT	
3.750	4.921	5.630	8.110	5.827	0.866	2.854	2.776	1.240	1.988	0.118	1/2 NPT	
4.000	5.157	5.906	8.504	6.102	0.866	2.854	2.776	1.240	1.988	0.118	1/2 NPT	
4.250	5.591	6.496	9.055	6.693	0.866	2.854	2.776	1.240	1.988	0.118	1/2 NPT	
4.500	5.984	6.890	9.449	7.087	0.866	2.854	2.776	1.240	1.988	0.118	1/2 NPT	
4.750	5.984	6.890	9.449	7.087	0.866	2.854	2.776	1.240	1.988	0.118	1/2 NPT	
5.000	6.378	7.283	10.551	7.480	1.024	3.524	3.445	1.713	2.461	0.157	1/2 NPT	
5.500	6.890	7.874	11.929	8.071	1.024	3.524	3.445	1.713	2.461	0.157	1/2 NPT	
6.000	7.402	8.465	12.126	8.661	1.024	3.524	3.445	1.713	2.461	0.157	1/2 NPT	
Dimensions in millimeter												
d _w	d ₁	d ₂	da	а	S	I ₁	I_2	I ₃	I ₄	I ₅	Х	
50	75	84	138	88	15	63	61	30	45	3	3/8 NPT	
60	89	101	149	105	17,5	64	62	30	46	3	3/8 NPT	
70	98	113	176	118	20	64	62	30	46	3	3/8 NPT	
80	110	132	191	135	20	65	63	31	47	3	3/8 NPT	
90	121	140	203	145	22	72.5	70.5	31.5	50.5	3	1/2 NPT	
100	131	150	216	155	22 22	72.5	70.5	31.5	50.5	3 3	1/2 NPT	
110 120	142 152	165 175	230 240	170 180	22	72.5 72.5	70.5 70.5	31.5 31.5	50.5 50.5	3	1/2 NPT 1/2 NPT	
120	162	185	240	190	26	89.5	87.5	43.5	62.5	4	1/2 NPT	
140	175	200	303	205	26	89.5	87.5	43.5	62	4	1/2 NPT	
150	188	215	308	220	26	89.5	87.5	43.5	62.5	4	1/2 NPT	

Note: Additional technical & dimensional information will be provided on request.